
How to Learn Multiple Tasks

Raffaele Calabretta
Andrea Di Ferdinando
Domenico Parisi
Institute of Cognitive Sciences and Technologies
Italian National Research Council
Rome, Italy
raffaele.calabretta@istc.cnr.it

Frank C. Keil
Department of Psychology
Yale University
New Haven, CT, USA

Abstract
The article examines the question of how learning multiple
tasks interacts with neural architectures and the flow of infor-
mation through those architectures. It approaches the question
by using the idealization of an artificial neural network where
it is possible to ask more precise questions about the effects
of modular versus nonmodular architectures as well as the ef-
fects of sequential versus simultaneous learning of tasks. A
prior work has demonstrated a clear advantage of modular ar-
chitectures when the two tasks must be learned at the same
time from the start, but this advantage may disappear when
one task is first learned to a criterion before the second task
is undertaken. Indeed, in some cases of sequential learning,
nonmodular networks achieve success levels comparable to
those of modular networks. In particular, if a nonmodular net-
work is to learn two tasks of different difficulty and the more
difficult task is presented first and learned to a criterion, then
the network will learn the second, easier one without perma-
nent degradation of the first one. In contrast, if the easier task
is learned first, a nonmodular task may perform significantly
less well than a modular one. It seems that the reason for this
difference has to do with the fact that the sequential presen-
tation of the more difficult task first minimizes interference
between the two tasks. More broadly, the studies summarized
in this article seem to imply that no single learning architecture
is optimal for all situations.

Keywords
architecture, backpropagation, development, genetic algo-
rithms, modularity, multiple tasks, neural interference, neural
networks, sequential learning, What and Where

May 30, 2007; revised and accepted February 8, 2008
30 Biological Theory 3(1) 2008, 30–41. c©2008 Konrad Lorenz Institute for Evolution and Cognition Research

Raffaele Calabretta et al.

Neural Interference

Neural networks are simulation models of the nervous system
that can learn to exhibit various types of behavioral abilities.
Real organisms in real environments are confronted with mul-
tiple tasks and therefore their nervous systems must be able
to learn multiple abilities. However, in most simulations using
neural networks, a neural network is trained in a single task
and, if one is interested in studying different tasks, different
neural networks are used in different simulations. Hence, if we
want to understand real organisms there is a need for simula-
tions in which one and the same neural network is trained to
exhibit more than a single ability.

Learning many different abilities may pose a problem
for neural networks and, presumably, also for real nervous
systems. Abilities in neural networks are incorporated in the
network’s connection weights (LeDoux 2001). A neural net-
work can be said to possess some particular ability if the net-
work is able to generate the appropriate output for each of a
given set of inputs. Since, for any given network’s architecture,
the particular output with which the network responds to any
given input depends on the nature (excitatory or inhibitory)
and quantitative weight of the network’s connections, the net-
work’s abilities or, more generally, the network’s knowledge,
may be said to reside in the network’s connections. When an
ability is still not possessed, the state of the network can be
captured by assigning random values to the network’s connec-
tion weights. Hence, the network will not at such time be able
to generate the appropriate output in response to each relevant
input. The acquisition of the ability is a process of progressive
changes in the network’s connection weights so that at the end
the appropriate connection weights are found, that is, the con-
nection weights allowing the network to respond appropriately
to the inputs.

The problem of learning multiple tasks is that if a spe-
cific connection inside the network is part of the neural circuit
responsible for two distinct abilities, it can happen that acqui-
sition of one of the two abilities requires the connection to
change its weight in one direction, for example, by increas-
ing the connection’s current weight value, whereas acquiring
the second ability may require the same connection to change
its weight in the opposite direction, that is, by decreasing the
connection’s weight value. We will call this problem “neural
interference”: if a specific connection enters into the execu-
tion of different abilities, acquiring the different abilities may
require changes in the connection’s weight that interfere with
each other.

In this article we examine the problem of neural interfer-
ence by describing various simulations that explore the un-
derlying causes of the problem and propose various ways of
solving it.

Solution 1: Modular Networks

One solution to the problem of neural interference is modu-
larity. If a nervous system must acquire the ability to execute
two or more different tasks, a modular architecture may work
better than a nonmodular one. In learning two or more tasks
with a modular architecture one particular set of neurons (mod-
ule) is dedicated to each task so that the synaptic weights of
each module can be adjusted without interfering with the other
task(s). In contrast, in a nonmodular architecture, in which all
the synaptic weights are involved in all the tasks, adjusting one
weight for better performance in one task can result in a worse
performance in the other tasks.

Rueckl et al. (1989) trained neural networks to learn two
different tasks, requiring the extraction of two different types
of information from the same input. The network’s input is con-
tained in a “retina” in which different types of objects can ap-
pear, one at a time, in different positions. In each input/output
cycle the network has to both recognize which object appears
in the retina (What task) and determine the position of the
object in the retina (Where task) (cf. Ungerleider and Mishkin
1982; Milner and Goodale 1995, 2005; Velichkovsky 2007).
The network has two separate sets of output units separately
encoding the network’s response for the two tasks.

Rueckl et al. compared two different architectures, one
modular and the other nonmodular (Figure 1). Both architec-
tures have a single layer of internal units, with the input units
connected with the internal units through the lower connection
weights and the internal units connected with the output units
through the higher connection weights. In both architectures
the input units that encode what is contained in the retina are all
connected with all the internal units. The difference between
the two architectures lies in the higher connections. Whereas
in the nonmodular architecture all the internal units are also
connected to all the output units (i.e., to the output units that
encode the answer to the What task and the output units that
encode the answer to the Where task), in the modular archi-
tecture a subset of the internal units are connected only with
the What output units, and the remaining internal units is con-
nected only with the Where output units. Since the What task
is more complex than the Where task, Rueckl et al. found that
the best modular architecture is an architecture that assigns a
greater number of internal units to the What task than to the
Where task.

The modular architecture is in fact two separate architec-
tures, with two nonoverlapping subsets of connection weights
each dedicated to only one task. In the modular architecture
there is thus no interference between the two tasks. Depending
on the task-specific teaching input, in each cycle each connec-
tion weight receives a single message—to increase or decrease
its weight value—without interference from the teaching input

Biological Theory 3(1) 2008 31

How to Learn Multiple Tasks

Figure 1.
Modular and nonmodular network architectures for learning the What task
and the Where task.

for the other task. In contrast, in nonmodular architectures the
two tasks use two separate subsets of weights at the higher
level (connections between hidden layer and output layer) but
they share the same weights at the lower level (connections
between input units and hidden units). Hence, there may be
interference between the two tasks at the level of the lower
connection weights in that the same lower connection weight
can receive conflicting messages from the two teaching inputs.
The teaching input of the What task may ask the weight to in-
crease its current value while the teaching input of the Where
task may ask the same weight to decrease its value, or vice
versa. This predicts that modular architectures will work bet-
ter than nonmodular ones when it comes to learning the two
tasks.

The results of Rueckl et al.’s simulations show this to be
the case. Starting from random connection weights, Rueckl
et al. use the backpropagation procedure to progressively ad-
just these connection weights. In each cycle the network is
provided with two distinct teaching inputs, which specify the
correct answer for the What task and the Where task, respec-
tively. The network compares its own answer with the correct
answer and on the basis of this comparison modifies its connec-
tion weights in such a way that the discrepancy (error) between
the network’s answer and the correct answer is progressively
reduced. At the end of learning the total error is significantly
lower for neural networks with a modular architecture than for
networks with a nonmodular architecture.

As already mentioned, in Rueckl et al.’s simulations the
Where task is computationally less complex than the What
task. This depends on the fact that “the difficulty of an in-
put/output mapping decreases as a function of the systematic-
ity of the mapping (i.e., of the degree to which similar input
patterns are mapped onto similar output patterns and dissimi-
lar input patterns are mapped onto dissimilar output patterns)”
(Rueckl et al. 1989), and systematicity is higher in the Where
subtask than in the What subtask. As a consequence, in modu-
lar networks, which are effectively two separate networks, the
Where task is acquired earlier than the What task is although

the terminal error is equally low for the two tasks. In non-
modular networks, the terminal error separately computed for
the two tasks is lower for the Where task than for the What
task. The reason appears to be that when a nonmodular net-
work turns to the more complex What task after acquiring
the Where task (which is less complex and is learned first),
the connection weights of the network that are shared between
the two tasks have already been recruited for incorporating the
knowledge about the Where task. As a consequence, the What
task cannot be acquired as effectively as can the Where task.

In Rueckl et al. (1989) the network architectures are hard-
wired by the researcher. Di Ferdinando et al. (2001) have used
a genetic algorithm to evolve the most appropriate network
architecture in a population of neural networks that learn, via
backpropagation, the Where task and the What task during
their life (see also Calabretta et al. 2003). An individual net-
work’s architecture is encoded in the inherited genotype of the
network. At the beginning of the simulation a population of
random genotypes is generated, resulting in a number of differ-
ent neural architectures. Each individual learns the What task
and the Where task during its “life” and only the individuals
with the best learning performance are allowed to reproduce
by generating a number of “offspring” with the same neural
architecture as their (single) “parent” except for some random
mutations in the inherited genotype. After a certain number of
generations most individuals in the population have a modu-
lar architecture with more internal units assigned to the What
task and fewer internal units assigned to the Where task. This
confirms that modular architectures are better at learning the
two tasks than nonmodular architectures.

Interference Occurs, Especially in the Early Stages
of Learning

We interpret the inferior performance of nonmodular networks
in learning two tasks at the same time as due to interference,
i.e., the possible arrival to a specific connection of conflicting
messages for changing the connection’s current weight value.
In backpropagation learning, how much the weight of a partic-
ular connection has to be changed is proportional to the error
of the unit to which the connection arrives. This error (E) is the
discrepancy between the unit’s observed and desired activation
value:

E = ti − ai (1)

where ti is the desired activation value and ai is the observed
activation value.

In general, connections are told to change their current
value more substantially when the neural network’s errors
are larger. On the other hand, when the network’s errors are

32 Biological Theory 3(1) 2008

Raffaele Calabretta et al.

smaller, connection weights are required to change less. One
consequence of this is that the phenomenon of interference
in nonmodular networks is greater when a neural network’s
errors are larger and therefore the network’s connections are
asked to change more substantially their weight value. The
more a connection has to change its current weight value, the
more serious the interference if the required changes go in op-
posite directions. For example, the conflict between a message
that asks a connection to change its weight value by adding 0.1
and another message that asks the same connection to change
its weight by subtracting 0.2 is less strong than the conflict
between a message to add 1.0 and another message to subtract
2.0. In the first case the weight will be decreased by 0.1 and in
the latter case by 1.0. Therefore, in the latter case the conflict
creates a more serious problem since the damage with respect
to the first task is greater.

If we ask when a neural network’s errors are greater, the
obvious answer is that it is in the early stages of learning.
Therefore, we should expect the phenomenon of interference
in nonmodular networks that have to learn two tasks at the
same time to be greater at these early stages. This is diffi-
cult to discern from the summed squared error curve dur-
ing learning. The summed squared error (SSE) is the sum
of the squared errors of all the output units for all the input
patterns:

SSE =1

2

∑
E2

i . (2)

If we look at the SSE curve, what we see is that the
total error of the neural network decreases very rapidly in the
early stages of learning and then much more gradually in the
later stages. This in fact is what we observe in nonmodular
networks that learn the What and Where task, as in Rueckl et
al.’s simulations (Figure 2). Note that these and all the other
data shown in this article belong to our analyses of replications
of Rueckl et al.’s simulations.

The curve in Figure 2 represents the average of 10 repli-
cations of the simulation. If we look at the curves of the single
replications, we observe that in some replications the network
succeeds in learning the task (SSE approaches zero; Figure 3a),
but in most cases it does not (Figure 3b). Again, looking at the
SSE curve we cannot understand why this happens.

We have the same problem if we graph the average abso-
lute error (AAE), that is, the discrepancy between the actual
activation value of the output units and the desired activation
value (with no plus or minus sign) averaged for all input pat-
terns and for all output units:

AAE = Mean(|Ei |) (3)

Figure 2.
SSE curve for nonmodular networks that learn the What and Where task. The
curve represents the average of 10 replications of the simulation.

Figure 3.
SSE curve for two replications of the simulation with nonmodular networks. In
the first replication SSE approaches zero, in the second replication it remains
still large after 300 epochs.

Again, we might think that the observed decrease of AAE
during learning holds for all input patterns and for all output
units. However, this is not so. This becomes clear if we con-
sider the single maximum absolute error (MAE), that is, the

Biological Theory 3(1) 2008 33

How to Learn Multiple Tasks

Figure 4.
Changes in MAE (gray) and in AAE (black) during learning, for two replica-
tions of the simulation with nonmodular networks.

absolute error that is the largest among all absolute errors of
the input/output mappings:

MAE = Max(|Ei |) (4)

If we separately graph MAE and AAE, we see that while
AAE decreases very quickly in the early learning stages, the
value of MAE actually increases equally quickly during the
early learning stages, approaching its maximum possible value
(0.9). In some replications of the simulation, after the initial
increase MAE starts to decrease at some point before it reaches
its maximum possible value (Figure 4a), but in most replica-
tions MAE rises very close to its maximum value and then
does not decrease; indeed, it is never eliminated (Figure 4b).
(Note that MAE ranges between 0.0 and 0.9 because, following
Rueckl et al., we used 0.1 and 0.9 as training values.)

What the graph of Figure 4 shows is that, while the non-
modular network is learning the two tasks, interference causes
three effects: (a) at least one of the network’s outputs becomes
entirely mistaken; (b) this takes place in the very early stages
of learning; and (c) if MAE gets too close to its maximum
value it becomes hard to eliminate as learning progresses.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Activation State

E
 S

Figure 5.
The ES of a unit as function of its activation state.

We can now understand the difference between the two
replications of Figure 3. In the first replication MAE doesn’t
get too close to its maximum value, and thus the network
succeeds in solving the task, whereas in the second replication
it gets too close to its maximum value and the network is
unable to solve the task. The reason why it becomes harder
to eliminate the MAE as it approaches its maximum value
is that in computing the error signal (ES) of a unit (whether
output unit or internal unit), the backpropagation procedure
uses the first derivative of the logistic function. For example,
for an output unit, ES (for a given input pattern) is computed
as follows:

ES =E × Derivi (5)

where

Derivi= ai × (1 − ai) (6)

where ai is the activation state of the unit. The derivative tends
to zero for values of ai that tend to either 1 or 0. Hence, a unit’s
ES tends to zero when the unit’s activation value either tends
to 1 or to 0. If, for example, the desired activation value is 1,
the unit’s ES tends to zero both when the unit’s activation state
is near 1 (which of course is obvious) and when the activation
state is near 0 (which is less obvious) (Figure 5).

In other words, the formula for computing ES is, some-
what paradoxically, such that if a unit responds in a completely
mistaken manner, its ES is very small. Therefore, the network
modifies the weights of the connections arriving to that unit
by a very small quantity, which is insufficient to eliminate the
error.

As we have already noted, the phenomenon of neural
interference occurs especially in the early stages of learning.
Rueckl et al. (1989) observe that in the early learning stages

34 Biological Theory 3(1) 2008

Raffaele Calabretta et al.

Figure 6.
SSE curve for nonmodular networks that learn the What and Where tasks for
10,000 epochs (average of 10 replications of the simulation). Note that the
error scale is different than in the preceding figures.

nonmodular networks are more exposed to a pressure to change
in order to learn the easier task, the Where task. After these
changes in the network’s connection weights have been made,
the second, more complex, task, the What task, can be learned
only “within the confines of the constraints placed on the
hidden node connections by the local computation,” meaning
that it is too late to learn the What task.

However, the ES formula does not imply that, once some
particular unit responds in a completely mistaken way, it is
impossible to make the unit respond correctly. If the ES for a
given unit is very small, the weights that determine the unit’s
activation state are also changed by very small quantities, and
therefore the learning process can take many epochs. But it
should be possible at the end for the learning algorithm to
bring even these units with a very mistaken activation state to
their correct activation state. In fact, if instead of discontinu-
ing learning after 300 epochs, as in Rueckl et al. (1989), we
continue learning until epoch 10,000, the terminal SSE turns
out to be near zero even for nonmodular networks in all the
10 replications of the simulation (Figure 6). Therefore, as sug-
gested by our analysis, interference in nonmodular networks
that try to learn two tasks at the same time slows down learning
but it does not make learning impossible.

Another way to avoid the problem shown in Figure 5 is
to prevent the activation state of a unit from reaching extreme
values (i.e., 0.999 and 0.001). In this way, the derivative of
the logistic function cannot reach a value very close to 0 and,
when the response is completely mistaken, this produces a
bigger modification of the weights, thus reducing the number
of epochs needed to solve the two tasks. In fact, by doing so,
we have been able to obtain perfect learning of the What and
Where task even in nonmodular networks in Rueckl et al.’s
300 epochs. Although efficient, however, this method has the
limitation that it appears to be tied to the specific learning algo-
rithm used, the backpropagation algorithm. The method does

not eliminate the interference that characterizes nonmodular
networks, succeeding only in eliminating the negative effects
we have discussed.

As Rueckl et al.’s results indicate, interference can be
eliminated by using modular networks in which distinct sets
of connections (i.e., modules) take care of separate tasks and
it is therefore impossible for contradictory instructions for
weight change to arrive at a particular connection. (A form
of intratask interference also exists during learning of a sin-
gle task, but it is much less strong than when two tasks have
to be learned at the same time; cf. Plaut and Hinton [1987].)
Consider that the MAE curve tells us only that at least one
output becomes entirely mistaken. The actual number of out-
puts entirely mistaken can, however, be more than one. To
quantify the number of output units with an entirely mistaken
activation state, we can introduce a threshold value: when a
unit’s error (E) reaches a value larger than 0.899, the unit’s
activation state is considered as entirely mistaken. Using this
measure we have determined the number of outputs that are
completely mistaken and we have observed that this number is
smaller in modular than in nonmodular networks, that is, 0.3
versus 1.9 (see Table 2b). This seems to confirm our analysis
in terms of MAE.

Modularity is one way to eliminate neural interference.
Another way, which allows even nonmodular networks to learn
two or more tasks, is sequential learning: the network learns
the two tasks not at the same time but one after the other.

Solution 2: Learning Two Tasks One after the Other

In all the simulations described so far neural networks start
learning the two tasks, the What task and the Where task, at
the same time. From the beginning of the simulation the per-
formance of the network in the two tasks is evaluated in each
cycle using the two teaching inputs, and all the network’s con-
nection weights are modified accordingly. After 300 cycles the
SSE has reached a stable value, which is 0.16 for modular ar-
chitectures and 0.90 for nonmodular architectures (average of
10 replications of the simulation with randomly selected ini-
tial set of connection weights); this is the SSE of the network.
Since, as we have observed, the What task is more difficult
to learn than the Where task, and for modular networks the
two separate components of SSE for the What and the Where
tasks at the end of the simulation are both very low, for non-
modular networks the SSE component for the What task is
significantly higher (0.90) than the SSE component for the
Where task (0.00).

Now imagine that a neural network learns the two tasks
one after the other. The network starts learning one task, that is,
only the teaching input for this task is provided to the network.
Only after this first task has been learned (i.e., the SSE for
the task is near zero), is the second task introduced and does

Biological Theory 3(1) 2008 35

How to Learn Multiple Tasks

the network start learning the second task. Note, however, that
when the network starts learning the second task, the teaching
input for the first task is still being provided to the network. In
other words, learning of the first task is not discontinued when
learning of the second task begins.

When this form of sequential learning is applied to modu-
lar networks the results are not different from the case in which
both tasks are learned at the same time. As already observed,
modular networks are actually made up of two separate sub-
networks (modules) that do not share any single connection
weight (cf. Figure 1). Therefore, whether the two tasks are
learned together or sequentially is irrelevant and the SSE for
both tasks goes to zero in both cases. The interesting question
is: Can sequential learning allow nonmodular networks to ac-
quire both tasks equally well and therefore avoid the handicap
with respect to modular networks that is apparent when the
two tasks are learned together?

The answer seems to be yes. We have trained a nonmodu-
lar network by providing the network with the What teaching
input for 100 cycles, and omitting the Where teaching input.
One hundred learning cycles are sufficient for the network to
reach an SSE value of near zero in the What task. From this
point on, that is, starting from cycle 101, both the teaching in-
put for the What task and the teaching input for the Where task
are provided to the network. At the end of the simulation (300
cycles) SSE is 0.04 (average of 10 runs of the simulation). In
other words, if the learning of the two tasks is sequential rather
than simultaneous, a nonmodular network as well as a modular
network can acquire both tasks equally (terminal SSE: 0.16;
the difference between these two conditions is not significant).

However, the situation appears to be somewhat more com-
plex. In the simulation just described the nonmodular network
first learns the more complex What task and only subsequently
the easier Where task. We have run another simulation in which
the order is inverted. The network first learns the easier Where
task and then the more difficult What task. Note that since the
Where task is easier than the What task the network learns
the Where task in just 20 cycles (SSE near zero) compared
with the 100 cycles necessary to learn the What task. The new
task, the What task, is therefore added just 20 cycles after
the beginning of the simulation. At the end of the simulation
(after 300 cycles) the SSE is 0.53, an error almost entirely
due to the What task, which is learned when the Where task
has already been learned. This error is larger than the terminal
error for modular networks (0.16) but smaller than the termi-
nal error of the nonmodular networks that start learning the
two tasks at the same time (0.90). Apparently, then, it is al-
ways beneficial for nonmodular networks to learn two tasks
in sequence rather than at the same time, and better to learn
the more complex or difficult task first and the easier task
later than the other way round. With sequential learning, if
the more difficult task is learned first, nonmodular networks

Table 1. Error in modular and nonmodular networks, in the three conditions
(the data refer to the average of 10 replications of the simulation). For each of
the three conditions, we performed a one-way ANOVA in which the network
architecture was manipulated between the seeds (where each seed corresponds
to a different subject).

Modular (M) Nonmodular (NM) Diff. M/NM

Both 0.16 0.90 Significant
Where → Both 0.16 0.48 Significant
What → Both 0.16 0.04 Not significant

can learn both tasks as effectively as modular networks (see
Table 1). But if the easier task is learned before the more diffi-
cult task the terminal error turns out to be larger and the second,
more difficult, task is not learned as effectively as in modular
networks.

Notice that in the simulations we have described the two
tasks are acquired sequentially but the learning of the task ac-
quired first is not discontinued when the network starts learn-
ing the second task. What happens if the nonmodular network
only begins learning a second task after the teaching input for
the first task has ceased? The answer is catastrophic forgetting
(French 1999). After 300 learning cycles the SSE is 17.15 for
the simulation in which the What task is learned first and then
the network learns the Where task, and 16.65 for the simu-
lation in which the Where task is learned first and then the
network learns the What task. As the literature on catastrophic
forgetting shows, sequential learning is possible only if, after
learning the first task, the first task continues to be rehearsed
while the network is learning the second task.

How can we explain our results? Why does sequential
learning with rehearsal of the first task allow even a nonmod-
ular network to learn two tasks? Why is learning the more
difficult What task first and then adding the simpler Where
task better than learning the two tasks in the opposite order?

The answer is that with sequential learning we are able
to reduce, even though not completely, neural interference be-
tween the two tasks (intratask interference, which is weaker,
continues to operate). Figure 7 shows how this happens. As
explained before, when the network learns two tasks at the
same time, it is in the first stages of learning that interference
reaches its maximum strength because in these first stages
the error messages are larger (Figure 7a). In contrast, in the
first stages of sequential learning there is only one task to
be learned, and therefore there is no interference (Figure 7b).
When the first task is learned (SSE approaches zero), the sec-
ond task is added but there is still no interference between
the two tasks in that the first task has already been learned
and therefore it does not send any error message (Figure 7c).
It is true that when the learning algorithm starts to modify
the weights to learn the second task, the performance in the

36 Biological Theory 3(1) 2008

Raffaele Calabretta et al.

first task can somehow decrease. Since the lower connection
weights are shared by the two tasks, the changes in connec-
tion weights that result from the teaching input for the second
task can influence the network’s performance on the first task
(and vice versa). Then as soon as the performance in the first
task decreases, the first task starts again to send error mes-
sages. However, these error messages will be very small in
comparison to those of the second task (Figure 7d). As learn-
ing proceeds, performance of the first task can continue to
decrease for a while, but in the meantime performance of the
second task increases. Error messages from the two tasks are
thus never very large at the same time and there is never the
strong interference that occurs when the two tasks are learned
at the same time (Figure 7e).

In summary, sequential learning avoids the contemporary
presence of two large error messages and therefore reduces,
even if it does not eliminate, neural interference. A conse-
quence of this is that, given that the first task is learned without
any interference whereas the second task is learned with some
(reduced) interference, it is better to learn the more difficult
task first than the other way round.

Figures 8a and 8b show the SSE curve separately for
the Where task and the What task for both the simulation
in which the What task is acquired first and the Where task
is added later (Figure 8a) and the simulation in which the
order of acquisition is reversed (Figure 8b). In both simula-
tions, when the second task is added after the first task has
been learned (SSE near zero) the performance in the first task
is initially somewhat damaged (small increase in SSE) as a
result of the introduction of the new task, but very quickly
the damage is repaired and neutralized (SSE is again near
zero).

Neural interference occurs during this period. However,
for reasons already explained, its size is not as big as it would
be if the two tasks were learned at the same time. Moreover,
neural interference is bigger when the task learned first is the
easier task.

We can better understand this last point if we look at MAE.
When the easier task is learned first, the number of outputs that
are completely mistaken increases (see Tables 2a and 2b).

By comparing the two tables it can be seen that neural in-
terference pushes some network outputs to become completely
mistaken during the early phases of learning, and that when
this happens it is very difficult for the network to carry these
outputs back to the right values.

Neural Interference and Backpropagation

One could think that our results concerning the effects of
neural interference are due to the specific learning algorithm
used, the backpropagation algorithm. In fact, although some
of the consequences of neural interference are specific to the

Table 2. Number of outputs completely mistaken (error larger than 0.899) in
modular and nonmodular networks in the three conditions (a) during learning
process (note that this value is reached during the early phases of learn-
ing) and (b) at the end of the learning process (the data refer to the average
of 10 replications of the simulation). For each of the three conditions, we
performed a one-way ANOVA in which the network architecture was ma-
nipulated between the seeds (where each seed corresponds to a different
subject).

Modular (M) Nonmodular (NM) Diff. M/NM

(a)
Both 0.40 2.30 Significant
Where → Both 0.40 1.40 Significant
What → Both 0.40 0.10 Not significant

(b)
Both 0.30 1.90 Significant
Where → Both 0.30 1.10 Significant
What → Both 0.30 0.00 Not significant

backpropagation learning algorithm, neural interference is a
more general phenomenon that exists every time a neural net-
work has to learn more than one task at the same time. More
specifically:

(1) We have seen that the error measure typically used in con-
nectionist simulations, that is, the summed squared error (and,
more generally, all error measures that take into consideration
a network’s global performance) does not show the real nature
of the error due to neural interference. This error is not the
sum of many small errors distributed on many patterns and
many units but rather due to a few large errors distributed on a
very few units. This general result also applies to other algo-
rithms, including the unsupervised genetic algorithm. (2) We
have seen that these few but large errors arise during the early
stages of learning and tend to last until the end of learning
(compare Tables 2a and 2b). As we have shown, in the case of
the backpropagation procedure this phenomenon is explained
by the fact that a unit’s error signal (ES) tends to zero both
when a particular unit responds correctly and when it responds
in a completely mistaken way. In this last case learning is very
difficult and slow because, as ES is very small, the network
connection weights will be modified by a very small quantity.
However, the phenomenon is not specific to the backpropaga-
tion algorithm but is more generally due to neural plasticity and
how it changes during learning. At the beginning of learning
all the network’s connection weights are assigned a quanti-
tative value that is randomly chosen in a very small interval
(in our simulation between plus and minus 0.30). This choice
confers an initial large amount of plasticity on the neural net-
work since the network can improve its performance signifi-
cantly each time just by modifying very slightly its connection
weights. As is well known, during the course of learning the
absolute value of the connection weights generally tends to

Biological Theory 3(1) 2008 37

How to Learn Multiple Tasks

…… ……
Task 1 Task 2

a

b c d

…… ……

Task 2 Task 1

…… ……

Task 2Task 1

…… ……

Task 1 Task 2

…… ……

Task 1 Task 2

e

Input layer

Hidden layer

Output layer

Figure 7.
Neural interference between the What task and the Where task in a nonmodular network architecture. The solid lines represent connection weights, while the
dotted lines represent error messages (the thicker is the dotted line, the bigger is the error message). An early stage of simultaneous learning of the two task is
shown in (a), while four succeeeding stages of sequential learning are shown in (b)–(e) (for more details, see the text).

increase and neural networks therefore lose plasticity. If in
later learning stages the network’s performance is not good,
errors will be very difficult to correct because the network has
lost much of its plasticity. This is why early learning stages
are very important.

Given the importance of early learning stages, it becomes
critical to find methods that can help a network to avoid big
mistakes at this time. To the extent that these errors are due
to neural interference, a way to solve the problem consists of
reducing neural interference. There might be different methods
for reducing neural interference, such as introducing new units
in the course of learning or introducing noise. One method we
tried—preventing the activation state of units from reaching
extreme values—does not eliminate interference but it can
avoid its negative consequences in the specific case of the
backpropagation procedure. In contrast, sequential learning is

a general method that can prevent in all cases the negative
effects of neural interference.

Discussion

Neural interference may prevent a neural network from learn-
ing two or more distinct abilities or from learning them well.
Modularity is one way to solve the problem of neural inter-
ference. In fact, training neural networks to exhibit both an
ability to recognize the identity of an object and an ability to
recognize the object’s spatial location results in better learning
with modular than with nonmodular networks.

An analysis of neural interference in backpropagation
learning shows that neural interference is greater during the
early learning stages. Backpropagation learning implies that
connection weights are told to change, either increasing or
decreasing their current weight value, as a function of the

38 Biological Theory 3(1) 2008

Raffaele Calabretta et al.

0

5

10

15

20

25

0 50 100 150 200 250 300

Epochs

SS

Where What

(a)

0

5

10

15

20

25

0 50 100 150 200 250 300

Epochs

SS

Where What

(b)
Figure 8.
SSE curve in nonmodular networks shown separately for the Where task and for the What task, for both the simulation in which the What task is acquired first
and the Where task is added later (a), and for the simulation in which the order of acquisition is reversed (b). The curves represent the average of 10 replications
of the simulation. Note that, given the architecture of nonmodular networks, changes in connection weights that result from the teaching input for a task can
influence the network’s performance on the other task even if no teaching input is provided for the other task. In fact, the lower connection weights are shared
by the two tasks so that a change in these weights affects the network’s performance in both tasks.

quantitative discrepancy (error) between the actual and the de-
sired activation levels of the units activated by them. During the
early stages of learning errors tend to be larger and therefore
pressures to change (error messages) have a larger absolute
value. As a consequence, if a specific connection subserves
two distinct abilities and there is neural interference between
contradictory instructions to change, the negative effects of
neural interference will be greater during the early than dur-
ing the later stages of learning. This implies that if a neural
network must acquire two distinct abilities at the same time

and the two abilities are of different complexity and take dif-
ferent amounts of time to learn, the less difficult ability will be
learned better than the more difficult one.

Are nonmodular networks absolutely prevented from
learning two or more distinct abilities? The answer is no.
Another solution to the problem of neural interference is se-
quential learning. Sequential learning can allow even non-
modular networks to learn two or more distinct abilities. In
sequential learning a network first learns only a single ability,
thus without interference from the other ability. When the first

Biological Theory 3(1) 2008 39

How to Learn Multiple Tasks

ability has been learned, the network starts learning the second
ability. Note, however, that when the network starts learning
the second ability the network still receives error messages
with respect to the first ability and therefore the learning of the
first ability is not discontinued. Otherwise, if the learning of
the first ability is entirely discontinued when the network starts
learning the second ability, catastrophic forgetting ensues: the
second ability is acquired but the first ability is lost. The reason
for catastrophic forgetting is that in a nonmodular network in
which a specific connection weight may subserve both abilities
the changes in connection weights that are required to learn the
second ability tend to disrupt the first ability. This disruption is
avoided if the network continues to receive error messages also
with respect to the first ability that are taken into consideration
in deciding how to change the value of the connection weights.
This of course implies that there may be some neural interfer-
ence between error messages when the network starts learning
the second ability. However, the advantage of sequential learn-
ing is that this neural interference tends to be weak. When a
neural network starts learning two distinct abilities at the same
time, that is, nonsequentially, neural interference tends to be
great because both abilities are in their early learning stages
and therefore error messages are quite large for both abilities.
When a network learns two abilities one after the other, there
is no neural interference during the learning of the first ability
and, furthermore, neural interference is weak when the net-
work starts learning the second ability without discontinuing
the learning of the first ability. In fact, what makes learning
two tasks at the same time difficult is that in the first stages
of learning error messages are large and the network therefore
tends to receive potentially contradictory error messages, both
of which are large. The situation is different if the network
learns the two abilities sequentially. In the first stages of learn-
ing of the second ability the error messages for the second
ability will be large but those for the first ability will be small.
In the later stages both error messages will be small. Hence,
the negative effects of neural interferences are reduced and the
network can learn both tasks.

This analysis also explains our result, according to which
in learning two tasks sequentially it is better to learn the more
difficult task first and then the less difficult task, than the
other way round. Task difficulty is reflected in the size of error
messages, with more difficult abilities being intrinsically asso-
ciated with larger error messages. If the more difficult ability
is learned first, the ability that generates larger error messages
can thus be learned without interference. Furthermore, when
the network starts learning the second, less difficult ability,
this easier ability will generate for intrinsic reasons smaller
error messages and there will be little interference with the
small error messages associated with the already learned more
difficult ability.

Conclusions

Virtually all organisms of some complexity must learn to do
several different things. An organism might need to learn
to recognize several different visual and auditory patterns,
to learn where and when certain events or entities are likely to
occur, or to learn how many things occur together. Sometimes
these different learning tasks might occur in different biologi-
cal substrates, but often the same neural circuits are learning to
do different things. This article examines the question of how
the presence of multiple tasks interacts with learning architec-
tures and the flow of information through those architectures.
It approaches the question by using the idealization of an arti-
ficial neural network where it is possible to ask more precisely
about the effects of modular versus nonmodular architectures
as well as the effects of sequential versus simultaneous learn-
ing of tasks.

Although the prior work has shown a clear advantage of
modular architectures when the two tasks must be learned at
the same time from the start, this advantage may disappear
when one task is first learned to a criterion before the second
task is undertaken. Indeed, in some cases of sequential learn-
ing, nonmodular networks achieve success levels comparable
to those of modular networks. In particular, if a nonmodular
network is to learn two tasks of different difficulties and the
more difficult task is presented first and learned to a criterion,
then the network will learn the second, easier one without per-
manent degradation of the first one. In contrast, if the easier
task is learned first, a nonmodular task may perform signifi-
cantly less well than a modular one.

It seems that the reason for these differences has to do
with the fact that the sequential presentation of the more dif-
ficult task first minimizes interference between the two tasks.
Because fewer weight changes and less overall restructuring
must occur when the simpler task occurs second, the net-
work that has developed to execute the first more difficult
task is able to recover from the perturbations introduced by
the second task and reach a criterion level in both tasks.
By way of analogy, imagine that one is trying to learn how
to juggle three balls and ride a unicycle at the same time.
One can either learn to juggle first and then add unicy-
cle riding, or learn to ride first and then add juggling. The
two tasks clearly interfere with each other, but in general
the unicycle is much more difficult to master than is simple
juggling.

Assume further that early in the learning process for dif-
ficult tasks such as unicycling there are points where learning
is very difficult. It is clear that it would be almost impossible
for learners to pass these points if simultaneously they have
to continue learning another simpler task such as juggling a
few balls. In other words if one learns juggling first and then

40 Biological Theory 3(1) 2008

Raffaele Calabretta et al.

tries the unicycle, the interference created by the juggling may
increase the difficulty of the unicycle in the initial phase up to
an impossible level. But if one first rides the unicycle, once
those difficult learning points are crossed and the task becomes
easier, it is not hard to then add in juggling.

What are the implications of serial versus simultaneous
learning in actual organisms? How often, for example, does an
organism encounter one task first, learn it to mastery and then
start on a separate task? Is it more common for the organism
to have to learn both tasks together from the start? In the
case of the What versus Where task it seems likely that both
tasks occur together from the start, for one rarely receives
just one form of information at a time. If that is so, then it
may be difficult to envision a naturalistic situation in What
and Where learning where a nonmodular network could do
as well as a modular one. But, with other tasks, sequential
presentations of the tasks may not only be plausible, but the
norm.

A second issue concerns the need for the first task in the
two-task sequence to be the more difficult of the two for the
nonmodular networks to succeed. This constraint poses an in-
teresting problem of how networks might learn in the course
of an organism’s development. It is normally assumed that the
more immature an organism, the lower the level of task diffi-
culty or complexity it is able to master. It might thus seem only
natural that as organisms develop they tend to learn simpler
tasks before they learn more complex ones. If this is indeed
a general pattern, it suggests that modular networks would be
of distinct advantage for the learning problems confronted by
young organisms, but that nonmodular networks might thrive
in more mature organisms where the natural order of task dif-
ficulty might be reversed.

More broadly, the studies summarized in this article make
it clear that no one learning architecture is optimal in all sit-
uations. Modular architectures, whether prewired or acquired
through genetic algorithms, can have distinct advantages over
nonmodular ones in some multitask environments, but not all.
The challenge now is to describe in more precise terms those
cases where modular architectures have an advantage and to
understand the implications of such findings in artificial sys-
tems for natural systems in both their mature and developing
forms.

References

Calabretta R, Di Ferdinando A, Wagner GP, Parisi D (2003) What does it take
to evolve behaviorally complex organisms? BioSystems 69: 245–262.

Di Ferdinando A, Calabretta R, Parisi D (2001) Evolving modular architec-
tures for neural networks. In: Proceedings of the Sixth Neural Computation
and Psychology Workshop Evolution, Learning, and Development (French
R, Sougné J, eds), 253–262. London: Springer.

French RM (1999) Catastrophic forgetting in connectionist networks. Trends
in Cognitive Sciences 3(4): 128–135.

LeDoux J (2001) The Synaptic Self. New York: Viking.
Milner AD, Goodale MA (1995) The Visual Brain in Action. Oxford: Oxford

University Press.
Milner AD, Goodale MA (2005) Sight Unseen: The Exploration of Conscious

and Unconscious Vision. Oxford: Oxford University Press.
Plaut DC, Hinton GE (1987) Learning sets of filters using back-propagation.

Computer Speech and Language 2: 35–61.
Rueckl JG, Cave KR, Kosslyn SM (1989) Why are “what” and “where” pro-

cessed by separate cortical visual systems? A computational investigation.
Journal of Cognitive Neuroscience 1: 171–186.

Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: The
Analysis of Visual Behavior (Ingle DJ, Goodale MA, Mansfield RJW,
eds), 549–586. Cambridge, MA: MIT Press.

Velichkovsky, BM (2007) Towards an Evolutionary Framework for Human
Cognitive Neuroscience. Biological Theory 2: 3–6.

Biological Theory 3(1) 2008 41

